
ECE444: Software Engineering

Open Source

Shurui Zhou

Learning Goals

• Understand the terminology “free software” and explain open source culture and
principles.
• Reason about the tradeoffs of the open source model on issues like quality and risk

https://www.youtube.com/watch?v=a8fHgx9mE5U

The culture

• “I’m doing a (free) operating system (just a hobby,
won’t be big and professional like gnu) for 386(486) AT
clones.”

-- Linus Torvalds

• In the second quarter of 2013,

187.4 million Android (a Linux derivative) and 1.8 million Linux

phones shipped compromising over 80% of the shipping market

share for smartphones.

http://www.idc.com/getdoc.jsp?containerId=prUS24257413

• Software

•Hardware

•What else?

Motivation to understand open source.

• Companies work on open source projects.
• Companies use open source projects.
• Companies are based around open source projects.
• Principles percolate throughout industry.
• Political/philosophical debate and being informed is healthy.

7

https://open.canada.ca/en/open_source_software

https://govfresh.com/2018/12/canada-adopts-open-source-
mandate-for-government-software/

Canada Federal Government publishes a new IT directive that
mandates the use of open source software first before considering
proprietary software

11

Altair	BASIC， 1970
https://pt.wikipedia.org/wiki/Altair_BASIC

''Open source is an intellectual-property
destroyer, I can't imagine something that
could be worse than this for the software
business and the intellectual-property
business.’’

-- former Windows chief Jim Allchin in 2001.

“Free as in free speech.”

12

Stallman launched the GNU Project, founded the Free
Software Foundation, developed the GNU Compiler
Collection and GNU Emacs, and wrote the GNU General
Public License.

https://www.youtube.com/watch?v=Ag1AKIl_2GM

https://www.youtube.com/watch?v=djHxEcGLqN8

Stallman vs. Gates

15

Definitions

freedom 0 : The freedom to run the program as you wish, for any purpose
freedom 1: The freedom to study how the program works, and change it so it
does your computing as you wish
freedom 2: The freedom to redistribute copies so you can help others
freedom 3: The freedom to distribute copies of your modified versions to
others

16

Free Software vs Open Source
• Free software origins (70-80s ~Stallman)

• Political goal
• Software part of free speech

• free exchange, free modification
• proprietary software is unethical
• security, trust

• GNU project, Linux, GPL license
• Open source (1998 ~ O'Reilly)

• Rebranding without political legacy
• Emphasis on internet and large dev./user involvement
• Openness toward proprietary software/coexist
• (Think: Netscape becoming Mozilla)

18

Licenses
• The MIT (Massachusetts Institute of Technology) License: This is a

permissive license that places limited restrictions on software
reuse.

• The GNU General Public License v2: This copyleft license gives
users the freedom to run, study, and make improvements to the
software.

• The Apache License v2: This is a permissive license that mandates
preservation of the copyright notice and disclaimer.

• The BSD Licenses: They are a set of non-copyleft licenses that gives
minimal restrictions on the use and redistribution of the software.

Why learn about licenses?

• Companies will avoid certain licenses – commonly the copyleft
licenses

• Specific licenses may provide competitive advantages
• You may eventually want to release open source software or become

more involved in an open source project

21

Open Source Licenses
Software Percentage
MIT License 24%
GNU General Public License (GPL) 2.0 23%
Apache License 2.0 16%
GNU General Public License (GPL) 3.0 9%
BSD License 2.0 (3-clause, New or
Revised) License

6%

GNU Lessor General Public License (LGPL)
2.1

5%

Artistic License (Perl) 4%
GNU Lesser General Public License (LGPL)
3.0

2%

Microsoft Public License 2%
Eclipse Public License 2%

22List from: https://www.blackducksoftware.com/resources/data/top-20-open-source-
licenses

Why would projects choose one license over
another?

25
[From http://choosealicense.com/licenses/]

Dual License Business Model
• Released as GPL which requires a

company using the open source
product to open source it’s
application

• Or companies can pay $2,000 to
$10,000 annually to receive a copy
of MySQL with a more business
friendly license

26

Risk: Incompatible Licenses

• Sun open sourced OpenOffice, but when Sun was acquired by Oracle,
Oracle temporarily stopped the project.

• Many of the community contributors banded together and created
LibreOffice

• Oracle eventually released OpenOffice to Apache
• LibreOffice changed the project license so LibreOffice can copy

changes from OpenOffice but OpenOffice cannot do the same due to
license conflicts

The Cathedral and the Bazaar

• Fetchmail

32

Roles

• Leader
Develops initial system
Does what nobody else does
Makes final decisions

• User/programmer
• Dose most of the work

Requirements

• Who decides what features get added?
• Programmers

• who want to use the feature (scratch an itch)
• who are persuaded to add it

• Must be a way to distribute changes for a feature (Version Control)
• Must be way to talk about desired features (mailing lists, forums)

Testing

Lifecycle

Rewards

Costs

• Need a leader
• a lot of work over a long time
• must communicate
• an organizer as much as a designer

Open Source in a proprietary
context (benefits vs. Risk)

41

How do open source companies make money?

42

Open Source Business Models

• Support
• Hosting
• Open-core
• Restrictive Licensing
• Hybrid Licensing

Other Open Source Business Models

• Companies dedicate resources to projects which help them and the
community
• Apache receives donations

• Selling merchandise – Canonical (Ubuntu)
• Selling advertising or customer traffic – Mozilla

• But: Sustainability is a risk/problem!

Caleb Porzio
https://hubs.ly/H0rR4_X0

https://t.co/KH81IP9KnV?amp=1

Quality?!

“There are no technical requirements for the plugins aside from them
being able to be installed on a fresh Eclipse platform. We leave it to the
community to find and report bugs related to technical features
and conflicts.”

--Eclipse Marketplace, Dec 2014

Open Source Famous Phrases

Linus’s Law - Many eyes make all bugs shallow

Collaboration over Competition

…is open source code of higher quality?
• How would we be able to tell?

A Case Study of Open Source Software
Development: The Apache Server
Measure Apache Proprietary

System A
Proprietary
System C

Proprietary
System D

Post-release defects/KLOCA 2.64 0.11 0.1 0.7
Post-release defects/KDelta 40.8 4.3 14 2.8
Post-feature test Defects/KLOCA 2.64 * 5.7 6.0
Post-feature test Defects/KLOCA 40.8 * 164 196

Open SSL/Heartbleed.

• In 2013, OpenSSL made $2,000
in donations (and some from
other sources)

• One full time programmer
• Heartbleed (2014): Vulnerability

was found that effected about
17.5% of web servers (half a
million)

• Used by Yahoo, Twitter, Google
• Who is responsible?

53

Case Study: OpenSSL

• When HeartBleed occurred, Google reported the bug and later
submitted a patch

• After the HeartBleed bug, more than 17 companies agreed to each
contribute $100,000 annually for 3 year to the Core Infrastructure
Initiative.

• Core Infrastructure Initiative distributes funds to needy but important
projects

54

Bug Bounties

• Facebook, Google, Yahoo, Microsoft, and other companies have
rewards for finding bugs and reporting them

• Usually $100 or more for simple bugs and higher rewards for more
serious bugs

• Bounties can save the company from malicious exploits, which can
cost the company much more.
• Ponemon Institute reports average cost of $3.79 million per company data

breech (2014)

55

Hilarious irony

57

Summary

• Human beings take pleasure in a task when it falls in an optimal-
challenge zone; not so easy as to be boring, not too hard to achieve.

• A happy programmer is one who is neither underutilized nor weighed
down with ill-formulated goals and stressful process friction.

• Enjoyment predicts efficiency.

Open Source Reality

• Aggressive collaborative tool use
• version control, CI, issue tracker, reviews, …

• Careful management of people
• Process rigor
• Often aimed at expert users

• Intellectual property
• Often industry supported
• Often addressing common assets

64

similar to industrial

practices

65

Traditional Collaboration Model

66

Traditional Collaboration Model

67

Traditional Collaboration Model

68

Traditional Collaboration Model

69

Traditional Collaboration Model

70

Traditional Collaboration Model

Description Source code

71

Traditional Collaboration Model

Social Coding

• Github, Bitbucket, GitLab, etc.
• Add social networking features to coding
• Follow users
• Watch repositories

• Allows team structure to emerge as
opposed to previous planning

72

Fork-based Development

Upstream
Fork/Branch

Pull Request (PR)

Fork-based / Branch-based / Pull-based Dev.

Commit

Pull Request / Merge Request

73

Fork-based Dev. Lowers Entry Barriers

74

Fork-based Dev. Lowers Entry Barriers

75

Fork-based Dev. Lowers Entry Barriers

Upstream
Fork/Branch

Pull Request (PR)

76

77

Fork-based Development

78

Fork-based Development

82

Companies

Fork-based Dev. Becomes Popular

https://github.com/customer-stories?type=enterprise

https://github.com/customer-stories?type=enterprise

84

Problem -- Lost Contributions

91

Guest Lecture – Mike Hoye

"Mike Hoye is a senior staff project and community manager at Mozilla,
creators of Firefox, the web browser you actually want. He's here today
to talk about the evolution of open source - the ideas, practices,
licenses, values, how they're changing and what's coming next."

Design Patterns 1: SOLID

Shurui Zhou

History of Patterns

• Elements of Reusable
Object-Oriented
Software

• 23 OO patterns

Design Patterns

• When used strategically, they can make a programmer significantly
more efficient by allowing them to avoid reinventing the proverbial
wheel, instead using methods refined by others already

• Provide a useful common language to conceptualize repeated
problems and solutions when discussing with others or managing
code in larger teams.

Levels of Abstraction
• Requirements
• high-level “what” needs to be done

• Architecture (High-level design)
• high-level “how”, mid-level “what”

• OO-Design (Low-level design, e.g. design patterns)
• mid-level “how”, low-level “what”

• Code
• low-level “how”

Design vs. Architecture
Design Questions
• How do I add a menu item in Eclipse?

• How can I make it easy to add menu items in Eclipse?

• What lock protects this data?

• How does Google rank pages?

• What encoder should I use for secure communication?

• What is the interface between objects?

Architectural Questions
• How do I extend Eclipse with a plugin?

• What threads exist and how do they coordinate?

• How does Google scale to billions of hits per day?

• Where should I put my firewalls?

• What is the interface between subsystems?

Objects

Model

Design Patterns

Model
/ Subject

View

Controller

Factory

Observer

Command

Design Patterns

Model
/ Subject

View

Controller

Factory

Observer

Command

Design Patterns

Model
/ Subject

View

Controller

Factory

Observer

Command

/

/

/

/

Architecture

Model
/ Subject

View

Controller

Factory

Observer

Command

/

/

/

/

Architecture

Model
/ Subject

View

Controller

Factory

Observer

Command

Architecture

• Creational patterns provide object creation mechanisms that

increase flexibility and reuse of existing code.

• Structural patterns explain how to assemble objects and classes into

larger structures, while keeping the structures flexible and efficient.

• Behavioral patterns take care of effective communication and the

assignment of responsibilities between objects.

Classification of patterns

Criticism of Design Patterns
• Kludges for a weak programming language
Usually the need for patterns arises when people choose a programming
language or a technology that lacks the necessary level of abstraction.
• Inefficient solutions
Patterns try to systematize approaches that are already widely used.
• Unjustified use
If all you have is a hammer, everything looks like a nail.

UML Relationships

• Elements of Reusable
Object-Oriented
Software

• 23 OO patterns

Why Patterns?

• They offer solutions for specific problems
• They are easily applicable because the purpose and application are

consistently described
• They make work more efficient
• They can be adapted to specific contexts
• They make communication between developers easier
• Goal: Understandable, reusable, testable, maintainable and flexible

OO Design Principles

OO Design Principles

Single Responsibility Principle

Benefits:
• Frequency and Effects of Changes
• Easier to Understand

Q: What is the responsibility of your
class/component/microservice?

A class should have one, and only one, reason to change.
Just because you can, doesn’t mean you should

Single Responsibility Principle

Rectangle has multiple responsibilities!
Geometrics of rectangles: area()
Drawing of rectangles: draw()

Dependency in UML

• a directed relationship -- some UML element or a set of elements
requires, needs or depends on other model elements
for specification or implementation.

• Also called a supplier - client relationship. Modification of the
supplier may impact the client elements.

https://www.uml-diagrams.org/dependency.html

https://www.uml-diagrams.org/uml-core.html

Single Responsibility Principle

https://www.yegor256.com/2017/12/19/srp-is-hoax.html

• It is all about cohesion -- the degree to which the elements inside
a module belong together. in one sense, it is a measure of the
strength of relationship between the methods and data of a class and
some unifying purpose or concept served by that class (wikipedia)

• if a client of a class tends to always use all the functions of
that class, then the class is probably highly cohesive

Single Responsibility Principle (SRP)

Corresponding Design Patterns

• Façade

• Proxy

OO Design Principles

Open-Closed Principle (OCP)
• Software entities should be open for extension, but closed for modification.
• better stability, maintainability

Fundamental Object-Oriented Design Principle

Open-Closed Principle (OCP)
• Implementation:

• inheritance
• composition

• Benefits:
• extend a component’s logic without breaking backward

compatibility
• test different component implementations (that have the

same logic) against each other.

https://stackify.com/oop-concept-inheritance/
https://stackify.com/oop-concepts-composition/

Open-Closed Principle (Example: Client&Server)

The class is:
- not open for extension, since we always use a concrete Server instance
- not closed for modification, because if we wish to change to another
type of server, we must change the source code.

Open-Closed Principle (Example: Client&Server)

Abstract Class in Java

• An abstract method is a method that is declared without an implementation
• Consider using abstract classes if any of these statements apply to your situation:

• You want to share code among several closely related classes.
• You expect that classes that extend your abstract class have many common methods or

fields, or require access modifiers other than public (such as protected and private).
• You want to declare non-static or non-final fields. This enables you to define methods that

can access and modify the state of the object to which they belong.

• Consider using interfaces if any of these statements apply to your situation:
• You expect that unrelated classes would implement your interface. For example, the

interfaces Comparable and Cloneable are implemented by many unrelated classes.
• You want to specify the behavior of a particular data type, but not concerned about who

implements its behavior.
• You want to take advantage of multiple inheritance of type.

https://docs.oracle.com/javase/tutorial/java/IandI/abstract.html

https://docs.oracle.com/javase/8/docs/api/java/lang/Comparable.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Cloneable.html

Open-Closed Principle (Example: Order&Shipping)

Ground shipping

Open-Closed Principle (Example: Order&Shipping)

better

Thoughts? Critiques on OCP

• Adding un-needed flexibility to code (to make it open for extension)
breeds complexity and carrying cost.

• It requires imagining all sorts of use-cases that don’t exist in order to
make it ultimately flexible.

• Principle != you should always do this

OO Design Principles

Duck Tesk

Liskov Substitution Principle (LSP)

• The object of a derived class should be able to replace an
object of the base class without bringing any errors in
the system or modifying the behavior of the base class.

•Benefit: Code that adheres to LSP is loosely dependent
to each other and encourages code reusability.

Inheritance

IS-A relationship

?

Violating the Liskov Substitution Principle

• a Square is a Rectangle.

Violating the Liskov Substitution Principle
• a Square is a Rectangle.

Liskov Substitution Principle (LSP)
• A LSP compliant solution
• Introduce the interface Shape to bundle common methods.

Solution
• To encapsulate what varies and to provide a generic

interface we introduce an abstract Shape class.

Takeaway is to formulate the abstractions based on
the logical structure of the code and not fall into the
trap of letting real world relationships force its way
into the design decisions of the application.

Disadvantages to violating the LSP

• Code that does not adhere to the LSP is tightly coupled and creates
unnecessary entanglements.

• E.g. when a subclass can not substitue its parent class there would
have to be multiple conditional statements to determine the class or
type to handle certain cases differently.

Liskov Substitution Principle (LSP)

• Think twice before applying the IS-A trick
• Use polymorphism with great caution
• When writing an API first take the point of view of the client of your API
• Test-Driven Development (TDD), where client code must be written for

test and design purposes before writing the code itself.

Do withdrawal applies to all bank account? What

happen if we try to withdraw money from a locked long

term deposit account?

Do really all birds can fly? What happen if I try to
call Fly() on a bird that cannot fly?

Corresponding Design Patterns

• Strategy
• Composite
• Proxy

OO Design Principles

Interface Segregation Principle (ISP)

• No client should be forced to depend on
methods it does not use.

• The goal of ISP is similar to Single
Responsibility principle : to reduce the
side effects and frequency of required
changes by splitting the software into
multiple, independent parts.

• "fat" interfaces!

https://medium.com/@radheshyamsingh_83359/solid-principles-of-object-oriented-design-4f78d73526c6

Company has two types of workers,
contract and permanent workers.

Interface Segregation Principle (ISP)
• A fat interface is not necessarily a design flaw

[SuppressMessage("NDepend",
"ND1200:AvoidInterfacesTooBig",
Justification="This interface is fat because it needs to
support all primitive types"]
public interface IConvertible {

...

https://www.ndepend.com/docs/suppress-issues?_ga=2.63469095.983202201.1601605450-
1723910178.1601605450

Corresponding Design Patterns

• Memento
• Iterator

OO Design Principles

Dependency Inversion Principle (DIP)

High-level modules, which provide complex logic,
should be easily reusable and unaffected by changes
in low-level modules, which provide utility features.

maintainability and reusability

Dependency Inversion Principle (DIP)

• High-level modules should not depend on low-level modules.

Both should depend on abstractions.

• Abstractions should not depend on details (concrete

implementation). Details should depend on abstractions.

https://www.codeproject.com/Articles/538536/A-curry-of-
Dependency-Inversion-Principle-DIP-Inve

Dependency Inversion Principle (DIP)

• A High level module is any module that contains the policy decisions
and business model of an application.

• Low level modules are modules that contains detailed
implementation that are required to execute the decisions and
business policies.

Dependency Inversion Principle (DIP)

Button objects control Lamp objects
and only Lamp objects.

higher level module lower level module

Dependency Inversion Principle (DIP)

Problem if we DO NOT maintain DIP

• System will rigid: It will be difficult to change a part of the system
without affection too many other parts of the system.

• System will fragile: When we will make a change, unexpected parts of
the system will break.

• System or component will be immobile: It will be difficult to reuse it
in another application because it cannot be disentangled from the
current application.

• And so on……

Corresponding Design Patterns

• Factory Method
• Prototype
• Iterator

OO Design Principles

Building stable
and flexible
systems

Cargo cult programming

https://blog.ndepend.com/are-solid-principles-cargo-cult/

