ECE444: Software Engineering

Open Source

Shurui Zhou

«;é* The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Engineering

BS) B8y

%2 UNIVERSITY OF TORONTO

QL
AAAAA

Learning Goals

* Understand the terminology “free software” and explain open source culture and
principles.

* Reason about the tradeoffs of the open source model on issues like quality and risk

e Edward S. Rogers Sr. Department
Electrical & Computer Engineering

95 UNIVERSITY OF TORON"}O

https://www.youtube.com/watch?v=a8fHgx9mE5U

The culture %

GNU/Linux

*“I’'m doing a (free) operating system (just a hobby,
won’t be big and professional like gnu) for 386(486) AT
clones.”

-- Linus Torvalds
* |nthe second quarter of 2013,
187.4 million Android (a Linux derivative) and 1.8 million Linux
phones shipped compromising over 80% of the shipping market

share for smartphones.

http://www.idc.com/getdoc.jsp?containerId=prUS24257413

Products Blog Dc

r=C€

IS

[aM

open source

L ot £

O F-[if it A0

* Software Raspberry Pi 4

L H a rd Wa re Your tiny, dual-display, desktop computer
* What else?

If you wanna make your own open-source chip, just Google it.
Literally. Web giant says it'll fab them for free

Plus: IBM emits BlueGene/Q CPU blueprints — and 'fastest' open-source RISC-V core emerges

Fri3 ul 2020/ 15:30 UTC “ corres:

‘i‘i'% e Edward S. Rogers Sr. Department
Electrical & Computer Engineering

%’2 UNIVERSITY OF TORONTO

) OpenOf ficeorg

fedoro .
mc:zilla / A - 'blender L\'A >
Firefox ‘5.——'('? @m INUX

— MuySsn

L debian

Motivation to understand open source.

* Companies work on open source projects.

 Companies use open source projects.

* Companies are based around open source projects.

* Principles percolate throughout industry.

* Political/philosophical debate and being informed is healthy.

’fi}j The Edward S. Rogers Sr. Department

@ | of Electrical & Computer Engineering

% UNIVERSITY OF TORONTO

I * Government Gouvernement
of Canada du Canada Search Canada.ca n

Open Source Software

Submitted By
Gray OB.

¥ 0SS ’ W Open Source Software

W FOSS

Votes: 287 (b

Follow: , 19

The government of Canada (GOC) produces more software (aka. applications, code,
computer programs, scripts...) then you might think. All the data recently published on
Data.gc.ca had to come from somewhere! In-house software is often needed to collect,
sort & analyse this information.

If more of the software produced in the GOC was open source software (OSS) Canadians
would have a larger say in the data produced, citizens and business would be able to use
the software to be more efficient in their work and the GOC would get to improve its
software by receiving feedback and contributions from the public.

OSS is by no means the universal best approach but there are already great success
stories in the GOC, for example: Web Experience Toolkit and METRo (EC road forecast).
Even better, OSS promotes openness and accountability while providing Canadians with
more opportunities to participate in government.

Open source software should be central to Canada’s Action Plan on Open Government.

https://open.canada.ca/en/open_source_software

Canada adopts open source
mandate for government
software

December 10, 2018 By Luke Fretwell

. TS .

https://govfresh.com
mandate-for-government- sbftware/ _,

Canada Federal Government publishes a new IT directive that
mandates the use of open source software first before considering
proprietary software

C.2.3.8 Use Open Standards and Solutions by Default

C.2.3.8.1 Where possible, use open standards and open
source software first

C.2.3.8.2 If an open source option is not available or does
not meet user needs, favour platform-agnostic
COTS over proprietary COTS, avoiding
technology dependency, allowing for
substitutability and interoperability

’fﬁé The Edward S. Rogers Sr. Department
& | lectrical & Computer Engineering

,;;?:4 UNIVERSITY OF TORONTO

—2L

February 3, 1976 :

An Open Lettex to Hobbyists

To me, the most critical thing in the hobby market right now
is the lack of good software courses, books and software itself.
Without good software and an owner who understands programming, a
hobby computer is wasted. Will quality software be written for the
hobby market?

Almost a year ago, Paul Allen and myself, expecting the hobby
market to expand, hired Monte Davidoff and developed Altair BASIC.
Though the initial work took only two months, the three of us have
spent most of the last year documenting, improving and adding fea-
tures to BASIC. Now we have 4K, 8K, EXTENDED, ROM and DISK BASIC.
The value of the computer time we have used exceeds $40,000.

The feedback we have gotten from the hundreds of people who
say they are using BASIC has all been positive. Two surprising
things are apparent, however. 1) Most of these "users" never bought
BASIC (less than 10% of all Altair cwncrs have bought BASIC), and
2) The amount of royalties we have received from sales to hobbyists
makes the time spent of Altair BASIC woxrth less than $2 an hour.

Why is this? As the majority of hobbyists must be aware, most
of you steal your software. Hardware must be paid for, but soft-
ware is something to share. Who cares if the people who worked on
it get paid?

Is this fair? One thing you don't do by stealing software is
get back at MITS for some problem you may have had. MITS doesn't
make money selling software. The. royalty paid to us, the manual,
the tape and the overhead make it a break-even operation. One thing
you do do is prevent good software from being written. Who can af-
ford to do professional work for nothing? What hobbyist can put
3-man years into programming, finding all bugs, documenting his pro-
duct and distribute for free? The fact is, no one besides us has
invested a lot of money in hobby software. We have written 6800
BASIC, and are writing 8080 APL and 6800 APL, but there is very lit-
tle incentive to make this software available to hobbyists. Most
directly, the thing you do is theft.

What about the guys who re-sell Altair BASIC, aren't they mak-
ing money on hobby software? Yes, but those who have been reported
to us may lose in the end. They are the ones who give hobbyists a
bad name, and should be kicked out of any club meeting they show up
at.

I would appreciate letters from any one who wants to pay up, or
has a suggestion or comment. Just write me at 1180 Alvarado SE, #l14,
Albuquerque, New Mexico, 87108. Nothing would please me more than
being able to hire ten programmers and deluge the hobby market with

good software. 5/]\6{/ /‘7‘1%(7

Bill Gates
General Partner, Micro-Soft

Altair BASIC, 1970
https://pt.wikipedia.org/wiki/Altair_BASIC

"Open source is an intellectual-property
destroyer;, I can't imagine something that
could be worse than this for the software
business and the intellectual-property
business.”

-- former Windows chief Jim Allchin in 2001.

Richard Stallman

“Free as in free speech.”

File Edit Options Buffers Tools Help

H B E X = s & g w e

ﬂs/
Gptals

This is GNU Emacs, one component of the GNU/Linux operating system

GNU Emacs 23.1.50.1 (x86_64-pc-linux-gnu, GTK+ Version 2.16.1)
of 2009-07-31 on platinum, modified by Debian
Copyright (C) 2009 Free Software Foundation, Inc.

Authors Many people have contributed code included in GNU Emacs
Contributing How to contribute improvements to Emacs

GNU and Freedom Why we developed GNU Emacs, and the GNU operating system
Absence of Warranty GNU Emacs comes with ABSOLUTELY NO WARRANTY

Copying Conditions Conditions for redistributing and changing Emacs

Getting New Versions How to obtain the latest version of Emacs

Ordering Manuals Buying printed manuals from the FSF

Emacs Tutorial Learn basic Emacs keystroke commands

Emacs Guided Tour See an overview of the many facilities of GNU Emacs

~
- *About GNU Emacs* |
{1 menu-bar options menu-set-font

Stallman in 2019

@‘@ 2 Stallman launched the GNU Project, founded the Free
% r Software Foundation, developed the GNU Compiler
G N U/Lln uXx Collection and GNU Emacs, and wrote the GNU General
Public License.

The Edward S. Rogers Sr. Department

of Electrical & Computer Engineering

%"‘&?ﬁ UNIVERSITY OF TORONTO

https://www.youtube.com/watch?v=Ag1AKIl_2GM

ON THIS DAY IN 1983

PROJECT GNU
WAS ANNOUNCED BY

RICHARD STALLMAN

WATCH HOW HE LED THE

FREE SOFTWARE
MOVEMENT

https://www.youtube.com/watch?v=djHXEcGLqN8

Stallman vs. Gates

GNU/Linux

The Edward S. Rogers Sr. Department

of Electrical & Computer Engineering

%‘?ﬁ* UNIVERSITY OF TORONTO

u

February 3, 1976

An Open Letter to Hobbyists

To me, the most critical thing in the hobby market right now
is the lack of good software courses, books and software itself.
Without good software and an owner who understands programming, a
hobby computer is wasted. Will quality software be written for the
hobby market?

Almost a year ago, Paul Allen and myself, expecting the hobby
market to expand, hired Monte Davidoff and developed Altair BASIC.
Though the initial work took only two months, the three of us have
spent most of the last year documenting, improving and adding fea-
tures to BASIC. Now we have 4K, 8K, EXTENDED, ROM and DISK BASIC.
The value of the computer time we have used exceeds $40,000.

The feedback we have gotten from the hundreds of people who
say they are using BASIC has all been positive. Two surprising
things are apparent, however. 1) Most of these "users" never bought
BASIC (less than 10% of all Altair cwncrs have bought BASIC), aund
2) The amount of royalties we have received from sales to hobbyists
makes the time spent of Altair BASIC worth less than $2 an hour.

Why is this? As the majority of hobbyists must be aware, most
of you steal your software. Hardware must be paid for, but soft-
ware is something to share. Who cares if the people who worked on
it get paid?

Is this fair? One thing you don't do by stealing software is
get back at MITS for some problem you may have had. MITS doesn't
make money selling software. The. royalty paid to us, the manual,
the tape and the overhead make it a break-even operation. One thing
you do do is prevent good software from being written. Who can af-
ford to do professional work for nothing? What hobbyist can put
3-man years into programming, finding all bugs, documenting his pro-
duct and distribute for free? The fact is, no one besides us has
invested a lot of money in hobby software. We have written 6800
BASIC, and are writing 8080 APL and 6800 APL, but there is very lit-
tle incentive to make this software available to hobbyists. Most
directly, the thing you do is theft.

wWhat about the guys who re-sell Altair BASIC, aren't they mak-
ing money on hobby software? Yes, but those who have been reported
to us may lose in the end. They are the ones who give hobbyists a
bad name, and should be kicked out of any club meeting they shkow up
at.

I would appreciate letters from any one who wants to pay up, or
has a suggestion or comment. Just write me at 1180 Alvarado SE, #114,
Albuquerque, New Mexico, 87108. Nothing would please me more than
being able to hire ten programmers and deluge the hobby market with

good software. Eﬂ bﬂm—

Bill cates
General Partner, Micro-Soft

1y VYINU Upclalllly oysielll Q Fiy

Supported by the Free Software Foundation

ABOUT GNU PHILOSOPHY LICENSES EDUCATION SOFTWARE DOCS MALWARE HELPGNU GNUART

What is free software?

The Free Software Definition

freedom 0 : The freedom to run the program as you wish, for any purpose

freedom 1: The freedom to study how the program works, and change it so it
does your computing as you wish

freedom 2: The freedom to redistribute copies so you can help others

freedom 3: The freedom to distribute copies of your modified versions to
others

dward S. Rogers Sr. Department
ectrical & Computer Engineering

,;;?:4 UNIVERSITY OF TORONTO

Free Software vs Open Source

* Free software origins (70-80s ~Stallman)
* Political goal

* Software part of free speech
» free exchange, free modification

e proprietary software is unethical
* security, trust G N U/LI n UX
* GNU project, Linux, GPL license
e Open source (1998 ~ O'Reilly)

e Rebranding without political legacy

* Emphasis on internet and large dev./user involvement
* Openness toward proprietary software/coexist

* (Think: Netscape becoming Mozilla)

& The Edward S. Rog SD}
Bl of Electr 1&@} r Eng

IlU
%;, UNIVERSITY e TORONTO

Licenses

* The MIT (Massachusetts Institute of Technology) License: This is a
permissive license that places limited restrictions on software
reuse.

* The GNU General Public License v2: This copyleft license gives
usfgrs the freedom to run, study, and make improvements to the
software.

* The Apache License v2: This is a permissive license that mandates
preservation of the copyright notice and disclaimer.

* The BSD Licenses: They are a set of non-copyleft licenses that gives
minimal restrictions on the use and redistribution of the software.

g% The Edward S. Rogers St. Department
& | of Electrical & Computer Engineering

’;2 UNIVERSITY OF TORON"}O
Y4

Why learn about licenses?

* Companies will avoid certain licenses — commonly the copyleft
licenses

* Specific licenses may provide competitive advantages

* You may eventually want to release open source software or become
more involved in an open source project

Open Source Licenses
Software |percentage

MIT License 24%
GNU General Public License (GPL) 2.0 23%
Apache License 2.0 16%
GNU General Public License (GPL) 3.0 9%
BSD License 2.0 (3-clause, New or 6%

Revised) License
GNU Lessor General Public License (LGPL) 5%

2.1
Artistic License (Perl) 4%
GNU Lesser General Public License (LGPL) 2%
3.0
Microsoft Public License 2%
Eclipse Public License 2%

List from: https://www.blackducksoftware.com/resources/data/top-20-open-source-
licenses

Why would projects choose one license over
another?

/> \d9-0)~+ OpenSourcelecture.pptx - Microsoft PowerPoi... Drawing Tools - a
a =3
Home Insert Design Animations Slide Show Review View Format @
25 % cut E \ \ 4 \ 4 v Y Y H = =
| ~ 'Y oogle A X nbox (1,6 X uesday £ X rad Scho X unre X | {?} Licenses - X { G mozilla-€ X J {?} Licenses - X
B3 Copy \ o Google A M Inbox (1,6 Tuesday Grad Sch I (6421 {?}Li G ill Y(} Li
Paste New _f 5 X , -
~ - J Format Painter || sjide~ %-| € C [choosealicense.com/licenses/ w| =
Clipboard] Slig T CHRLN UU RIVCOITOGY R
Slides (Outline x

Apache

A permissive license that also provides an express ~ Required Permitted Fosbicien

grant of patent rights from contributors to users. @ License and copyright @ Commercial Use @ Hold Liable
notice ® Distribution @ Use Trademark
® State Changes @ Modification

® Patent Use
® Private Use
@ Sublicensing

View full Apache License 2.0 license »

GPL GNU Affero GPL v3.0 GNU GPL v2.0 GNU GPL v3.0

GPL is the most widely used free software license Required Permitted Forbidden
and has a strong copyleft requirement. When @ Disclose Source ® Commercial Use @ Hold Liable
distributing derived works, the source code of the @ License and copyright @ Distribution
work must be made available under the same notice @ Modification

Bl license. @ State Changes @ Patent Use

® Private Use

Slide 33 of 42 | "Office Theme™

1:31PM
12/1/2015

The Edward S s Sr. Department

of Electrical & Computer Engineering

4?4 UNIVERSITY OF TORONTO

Dual License Business Model

* Released as GPL which requires a
company using the open source
Y product to open source it’s
application

M S QL * Or companies can pay $2,000 to

H ® $10,000 annually to receive a copy
of MySQL with a more business
friendly license

Risk: Incompatible Licenses

* Sun open sourced OpenOffice, but when Sun was acquired by Oracle,
Oracle temporarily stopped the project.

* Many of the community contributors banded together and created
LibreOffice

* Oracle eventually released OpenOffice to Apache

* LibreOffice changed the project license so LibreOffice can copy
changes from OpenOffice but OpenOffice cannot do the same due to
license conflicts

?fi},? The Edward S. Rogers Sr. Department

of Electrical & Computer Engineering
%?f‘;‘ UNIVERSITY OF TORONTO

“The most important book about technology today,
ond programming.”

—Guy Kawasaki

The Cathedral and the Bazaar THE CATHEDRA
W iilEs & THE BAZAAR

AN
ERTNNER . |, }f
44 ."n_-_.
" S

with implications that go far bey

MUSINGS ON LINUX AND OPEN SOURCE
BY AN ACCIDENTAL REVOLUTIONARY

{

%
Rk i
g |
o

|
#
I

e

}” | gy~ =93

‘\"5‘“_'" P -~ 2

- ' s {“f‘ ; R
Centralized vS. decentralized
Planned vS. unplanned

ERIC S. RAYMOND

WITH A FOREWORD BY BOB YOUNG, CHAIRMAN & CEO OF RED HAT, INC.

* Fetchmail

e Edward S. Rogers Sr. Department
Electrical & Computer Engineering

@?mg UNIVERSITY OF TORONi"O

Roles

* Leader
Develops initial system
Does what nobody else does
Makes final decisions

* User/programmer
* Dose most of the work

e Edward S. Rogers Sr. Department
Electrical & Computer Engineering

%’%g« UNIVERSITY OF TORON"}O

Requirements

* Who decides what features get added?

* Programmers
* who want to use the feature (scratch an itch)
* who are persuaded to add it

 Must be a way to distribute changes for a feature (Version Control)
* Must be way to talk about desired features (mailing lists, forums)

al & Computer Engineering

ectrica
\EaEn)
%?ﬁ UNIVERSITY

OF TORONTO

Testing

Every user is a tester

Every programmer is a reviewer and bug
fixer

“Given enough eyeballs, all bugs are
shallow”

More users find more bugs.

"iﬁré The Edward S. Rogers Sr. Deparrment
& | lectrical & Computer Engineering

,;g« UNIVERSITY OF TORONTO

Lifecycle

Plausible promise - must start with a
(small) working program

Release early and often
Recognize good ideas from users

Keep users connected, let them see the
results of their work

"iﬁré The Edward S. Rogers Sr. Department
‘ of Electrical & Computer Engi i

ngineering
ag,é?mg« UNIVERSITY OF TORONTO

Rewards

Why would anybody do this?

Reise Github Trending !
prachnm Olstarbo

repository as you W
i

Sharpening the skills
Getting jobs (a new kind of CV)

g8 The Edward S. Rogers Sr. D}

;;: ‘ ectrical & Cor 1, r Engin

w $ UNIVERSITY OF TORONTO

Costs

* Need a leader
* alot of work over a long time
* must communicate
* an organizer as much as a designer

e Edward S. Rogers Sr. Department
Electrical & Computer Engineering

95 UNIVERSITY OF TORON"}O

Open Source In a proprietary
context (benefits vs. Risk)

How do open source companies make money?

L)
)
20

0201 0.0
0201000
(RO

j'll

=

q. r

+
+

7/

Open Source Business Models

Red Hat
* Support

* Hosting

databricks Acquia Cloud

* Open-core

* Restrictive Licensing

S SKINNY Thin fean Thick

* Hybrid Licensing

Definition: | ~90% OSS core ~70% OSS core ~50% OSS core ~10% OSS core
~10% closed “crust” ~30% closed “crust” ~50% closed “crust” ~90% closed “crust”
Productization: | Light commercial (closed) Medium commercial bits that | Heavy commercial bits Almost always 100% closed
add-ons / plugins that slot on | extend/embed the core usually | (closed) wrapped around core | products fundamentally based
top of core without disruption | requiring clean install paths that almost always entail on an OSS project and
time-bound/limited trial commonly materializing as a

versions and license SaaS service
e Edward S. Rogers Sr. Department management (disruptive

of Electrical & Computer Engineering upgrade paths)
@a?mg UNIVERSITY OF TORONTO

Other Open Source Business Models

 Companies dedicate resources to projects which help them and the
community
* Apache receives donations

* Selling merchandise — Canonical (Ubuntu)
* Selling advertising or customer traffic — Mozilla

 But: Sustainability is a risk/problem!

9"%}3 The Edward S. Rogers Sr. Department

@ | of Electrical & Computer Engineering

% UNIVERSITY OF TORONTO

| Just Hit $100k/yr On GitHub Caleb Porzio
Sponsors! £ @ (How I Did It) https://hubs.ly/HOrR4 XO

100,332

DEC JAN FEB MAR APR MAY JUN

@ Sponsor Syrup

dward S. Rogers Sr. Department
ectrical & Computer Engineering

,;g« UNIVERSITY OF TORONTO

https://t.co/KH81IP9KnV?amp=1

Quality?!

“There are no technical requirements for the plugins aside from them
being able to be installed on a fresh Eclipse platform. We leave it to the
community to find and report bugs related to technical features

and conflicts.”
--Eclipse Marketplace, Dec 2014

dward S. Rogers Sr. Depar
ctrical & Cor 1, r Engin

UNIVE RSITY OF TORONTO

Open Source Famous Phrases

Linus’s Law - Many eyes make all bugs shallow

Collaboration over Competition

...Is open source code of higher quality?
 How would we be able to tell?

A Case Study of Open Source Software
Development: The Apache Server

Apache Proprietary | Proprietary Proprietary
System A System C System D

Post-release defects/KLOCA 2.64 0.11

Post-release defects/KDelta 40.8 4.3 14 2.8
Post-feature test Defects/KLOCA 2.64 * 5.7 6.0
Post-feature test Defects/KLOCA 40.8 * 164 196

4 The E{ ard S. Rogers Sr. Department

-‘ of Electrical & Co } er Engmeetino
»z,” UNIVERSITY OF TORONTO

Open SSL/Heartbleed.

* In 2013, OpenSSL made $2,000
in donations (and some from
other sources)

* One full time programmer

* Heartbleed (2014): Vulnerability
was found that effected about
17.5% of web servers (half a

million)
* Used by Yahoo, Twitter, Google
* Who is responsible?

’fﬁé The Edward S. Rogers Sr. Department

of Electrical & Computer Engineering
%?gg« UNIVERSITY OF TORONTO

Case Study: OpenSSL

* When HeartBleed occurred, Google reported the bug and later
submitted a patch

* After the HeartBleed bug, more than 17 companies agreed to each
contribute $100,000 annually for 3 year to the Core Infrastructure
Initiative.

e Core Infrastructure Initiative distributes funds to needy but important
projects

’fi}j The Edward S. Rogers Sr. Department

@ | of Electrical & Computer Engineering

% UNIVERSITY OF TORONTO

Bug Bounties

* Facebook, Google, Yahoo, Microsoft, and other companies have
rewards for finding bugs and reporting them

* Usually $100 or more for simple bugs and higher rewards for more
serious bugs

* Bounties can save the company from malicious exploits, which can
cost the company much more.

* Ponemon Institute reports average cost of $3.79 million per company data
breech (2014)

g8 The Edward S. Rogers Sr. D}

;;: ‘ ectrical & Cor 1, r Engin

w $ UNIVERSITY OF TORONTO

Hilarious irony

Redmond top man Satya Nadella: '"Microsoft
LOVES Linux’

20 Oct 2014 at 23:45, Neil McAllister

he Edward S. Rogers Sr. Department
lectrical & Computer Engineering

9% UNIVERSITY OF TORONTO

Summary

* Human beings take pleasure in a task when it falls in an optimal-
challenge zone; not so easy as to be boring, not too hard to achieve.

* A happy programmer is one who is neither underutilized nor weighed
down with ill-formulated goals and stressful process friction.

* Enjoyment predicts efficiency.

Open Source Reality

* Aggressive collaborative tool use
e version control, Cl, issue tracker, reviews, ...

° . | UStr.\a\
Careful management of people similar {0 ind

* Process rigor ora ctices
* Often aimed at expert users

* Intellectual property
e Often industry supported
» Often addressing common assets

’fi}j The Edward S. Rogers Sr. Department

@ | of Electrical & Computer Engineering

% UNIVERSITY OF TORONTO

Traditional Collaboration Model

open source

Traditional Collaboration Model

Traditional Collaboration Model

Traditional Collaboration Model

Traditional Collaboration Model

Traditional Collaboration Model

Description Source code

Subject: [PATCH] Patch for pre-calculated loops per jiffy Signed-off-by: Tim Bird <tim.bird@am.sony.com>

Attached is a patch which allows for setting a pre-calculated
loops_per jiffy. This patch was derived from the CONFIG_INSTANT ON
feature in the CELF source tree, which was developed by MontaVista.
This feature is already available in the CELF source tree, for the
OMAP board.

diff -u -ruN linux-2.4.20.orig/Documentation/Configure.help linux-2.4.20/Documentation/Configure.help
--- linux-2.4.20.orig/Documentation/Configure.help Thu Nov 28 15:53:08 2002
+++ linux-2.4.20/Documentation/Configure.help Tue Sep 30 15:32:35 2003
@@ -5274,6 +5274,29 @@
replacement for kerneld.) Say Y here and read about configuring it
in <file:Documentation/kmod.txt>.

loops_per jiffy (LPJ) is the value used internally

by the kernel for the delay() function. Normally, LPJ is

determined at boot time by the routine calibrate delay(), in

init/main.c. This routine takes approximately 250 ms to complete

on my test machine. Note that the routine uses a sequence of programmed
waits to determine the correct LPJ value, with each wait taking about 1 HZ
(usually 10 ms) period. With a pre-calculated value, this calibration

is eliminated.

+Fast booting support

+CONFIG_FASTBOOT

Say Y here to enable faster booting of the Linux kernel. If you say
Y here, you will be asked to provide hardcoded values for some
parameters that the kernel usually probes for or determines at boot
time. This is primarily of interest in embedded devices where

quick boot time is a requirement.

This patch is currently against a linux 2.4.20 kernel, for the x86

architecture. If unsure, say N.

+ 4+ 4+ o+

+Fast boot loops-per-jiffy

+CONFIG_FASTBOOT LPJ

This is the number of loops passed to delay() to achieve a single
HZ of delay inside the kernel. It is roughly BogoMips * 5000.

To determine the correct value for your kernel, first turn off

the fast booting option, compile and boot the kernel on your target
hardware, then see what value is printed during the kernel boot.

When the patch is applied, a new option appears in the General setup
menu of menuconfig: "Fast booting". When this option is enabled, you
are asked to set the value of another new option: 'Loops per jiffy'.
These set the config variables CONFIG_FASTBOOT and CONFIG_FASTBOOT LPJ.

diffstat for this patch is:

Documentation/Configure.help | 23 b S
arch/i386/config.in | 6 ++++++ A
init/main.c | 13 +++++++++++44

If unsure, don't use the fast booting option. An incorrect value
will cause delays in the kernel to be incorrect. Although unlikely,
in the extreme case this might damage your hardware.

3 files changed, 42 insertions(+)

+ 4+ 4+

To apply the patch, in the root of a kernel tree use:

patch -pl <fastboot lpj.patch ARP daemon support

Traditional Collaboration Model

Social Coding

e Github, Bitbucket, GitLab, etc.
* Add social networking features to coding

* Follow users GitH“b

* Watch repositories

* Allows team structure to emerge as
opposed to previous planning

al & To;nputer ngineering
OF TORONTO

Jusste:
\EaEn)
%?ﬁ UNIVERSITY

Fork-based Development

Upstream
Pull Request (PR)
Fork/Branch

Commit

Fork-based / Branch-based / Pull-based Dev.

Pull Request / Merge Request

73

Fork-based Dev. Lowers Entry Barriers

LIscikit-learn / scikit-learn (PUsedby~ 86.4k @ Watch~ 23k %Star 391k | YFork 19.2k

<> Code Issues 1,398 Pull requests 722 Actions Projects 17 Wiki Security Insights

scikit-learn: machine learning in Python https://scikit-learn.org

machine-learning python statistics data-science data-analysis

D 25,081 commits I 20 branches (M 0 packages © 106 releases 42 1,571 contributors zfs View license
=

Branch: master » New pull request Create new file = Upload files = Find file Clone or download ~

' . 5 authors DOC clarifications on the release process (#15759) ... ® Latest commit 1382831 6 minutes ago
B .binder MAINT: simpler binder requirements.txt (#14832) 5 months ago
B .circleci [MRG] MNT Updates pypy to use 7.2.0 (#15954) last month
| .github MNT remove tag help wanted in doc template (#16122) 11 days ago

74

Fork-based Dev. Lowers Entry Barriers

LIscikit-learn / scikit-learn (PuUsedby~ 86.4k @ Watchv 23k %Star 391k | YFork 19.2k

<> Code It
¥ shuiblue / scikit-learn ®Owatchv 0 %sStar 0 YFork 19.2k

forked from scikit-learn/scikit-learn

scikit-learn: mat

machine-learning <> Code Pull requests 0 Actions Projects 0 Wiki Security Insights Settings

D 25,081 com scikit-learn: machine learning in Python https://scikit-learn.org Edit

e | Manage topics

Branch: master

' . 5 authors
Branch: master v New pull request Create new file = Upload files Find file Clone or download ~
i .binder

i i This branch is even with scikit-learn:master. il Pull request [£] Compare
i circleci

D 25,081 commits ¥ 20 branches (1 0 packages © 106 releases 22 1,571 contributors Zfs View license

| .github ' ' 5 authors DOC clarifications on the release process (scikit-learn#15759) - Latest commit 1382831 9 minutes ago

T
Bm .binder MAINT: simpler binder requirements.txt (scikit-learn#14832) 5 months ago

B circleci [MRG] MNT Updates pypy to use 7.2.0 (scikit-learn#15954) last month
i} .github

MNT remove tag help wanted in doc template (scikit-learn#16122) 11 days ago

75

Fork-based Dev. Lowers Entry Barriers

Upstream

Pull Request (PR)
Fork/Branch

] scikit-learn / scikit-learn (MUsedby~ 86.4k @ Watch~ 2.3k s star 391k YFork 19.2k
Code Issues 1,39(11 Pull requests 723) Actions Projects 17 Wiki Security Insights
Filters ~ is:pr is:open © Labels 29 == Milestones 4
i1 723 Open v 8,461 Closed Author ~ Label ~ Projects ~ Milestones ~ Reviews ~ Assignee ~ Sort ~

i’ [MRG] Fix FutureWarning in plot_partial_dependence_visualization_api.py
#16256 opened 2 minutes ago by kssing

i1 [MRG] Adding explained variances to sparse pca v
#16255 opened 1 hour ago by Batalex

i1 "Improved error message when plotting a not fitted tree." X J2
#16253 opened 1 hour ago by Rick-Mackenbach

il ENH Add 'if_binary' option to drop argument of OneHotEncoder v d2a
#16245 opened 23 hours ago by rushabh-v « Changes requested

76

Fork-based Development

Fork/Branch

Fork-based Development

Fork/Branch

Fork-based Dev. Becomes Popular

NETFLIX

.. American\ GROUPON —E—
N Airlines @ E E

W S sotiy Companies

https://github.com/customer-stories?type=enterprise

https://github.com/customer-stories?type=enterprise

Problem -- Lost Contributions

RoyWalace
habzy
iKkyu0319
RomainPiel e

yizelang
zouyvefu

Wendy
mkoppanen —
WangZnen0308

Oricellar-iabs * o g
Zuozhenhad .

whanjang -

Kidolk s a

johncarpenter ﬂ
darrensteele . g
Axellyze ﬂ
gnage

84

Guest Lecture — Mike Hoye

"Mike Hoye is a senior staff project and community manager at Mozilla,
creators of Firefox, the web browser you actually want. He's here today
to talk about the evolution of open source - the ideas, practices,
licenses, values, how they're changing and what's coming next."

Design Patterns 1: SOLID

Shurui Zhou

«;é* The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Engineering

BS) B8y

> UNIVERSITY OF TORONTO

QL
AAAAA

History of Patterns

The Edward S. Rogers Sr. Department

| of Electrical & Computer Engineering

,g,gg UNIVERSITY OF TORONTO

Copyrlghteli’r.‘hienal

A Pattern Language

Towns -Buildings - Construction

Copyrighted Material

Design Patterns

Elements of Reusable
Object-Oriented Software

Erich Gamma
Richard Helm

<
<

 Elements of Reusable
Object-Oriented
Software

=
J
p
w
~
e
Z
=
=
m
W
e
<
)
~
~
O
m
w
n
=
S
Z
>
=
~
~
@,
<
>
=
7
m

Christopher Alexander Ralph Johnson
Sara Ishikawa - Murray Silverstein John Vlissides ¢ 2 3 O O p atte ns
WITH
Max Jacobson -Ingrid Fiksdahl-King
Shlomo Angel

SA1¥3S

Cover st D IS M Escher /€ Ast - Baam - Holland. All rights reserw

Foreword by Grady Booch

Copyrighted Material

e Edward S. Rogers Sr. Department
Electrical & Computer Engineering

"?&5‘”@ UNIVERSITY OF TORON"}O

Design Patterns

* When used strategically, they can make a programmer significantly
more efficient by allowing them to avoid reinventing the proverbial
wheel, instead using methods refined by others already

* Provide a useful common language to conceptualize repeated
problems and solutions when discussing with others or managing

code in larger teams.

g8 The Edward S. Rogers Sr. D}

;;: ‘ ectrical & Cor 1, r Engin

w $ UNIVERSITY OF TORONTO

Levels of Abstraction

* Requirements
* high-level “what” needs to be done

Architecture (High-level design)
* high-level “how”, mid-level “what”

OO-Design (Low-level design, e.g. design patterns)
. 14 77 7 12
* mid-level "how , low-level "what

Code

e low-level “how”

cal & To;nputer ngineering
OF TORONTO

ectri
g:?:g UNIVERSITY

Design vs. Architecture

Design Questions Architectural Questions

* How do | add a menu item in Eclipse? How do | extend Eclipse with a plugin?

* How can | make it easy to add menu items in Eclipse? What threads exist and how do they coordinate?

* What lock protects this data? How does Google scale to billions of hits per day?

* How does Google rank pages? Where should | put my firewalls?

* What encoder should | use for secure communication? What is the interface between subsystems?

 What is the interface between objects?

Edward S. Rog SD}t nt

;’ﬁ“ lectrical & Cor 1, uter Engin,

‘&?ﬁ UNIVERSITY OF TORONTO

Objects

The Edward S. Rogers Sr. Department

| of Electrical & Computer Engineering

,g,gg UNIVERSITY OF TORONTO

Model

Design Patterns

/o R T R TR — MWW MM ——————————— _— I
: |
! Factory > View :
|
| I
' |
' |
' |
' |
' |
[A 4 I
|

Model I
| > <
| Observer / Subject Controller :
|
| I
' |
I A\ 4 I
' |
: Command :
' |

e Edward S. Rogers Sr. Department

Electrical & Computer Engineering

9% UNIVERSITY OF TORONTO

Design Patterns

The Edward S. Rogers Sr. Department

| of Electrical & Computer Engineering

,g,gg UNIVERSITY OF TORONTO

| >
: >
| » —]
|
|
|
| L. A vy & - -=7T === == v
| 1 Factory > View < I <
I I '
I I '
I I :
| . v v :
: : Observer g /,\S/Iuob(;eelct < Controller ﬁ—|—
I I 4 A |
| l I I
I
1 I Command :I
| = [—
: A
|
|
|
|
|

Design Patterns

Model
/ subject Controller
I A

Command

______ - d

—-— e o e o - -
»
Ll

[+—

he Edward S. Rogers Sr. Department

of Electrical & Computer Engineering

UNIVERSITY OF TORONTO

Architecture

o e o e o e e mm mm e o e mm Em mm o = =y

: [e 1 1|
| Ejj:f
|

= = e e e e e e mm = = =y

| Factory |—»|

Controller

Model
oy

Command I I

- A
I

C— :

r——-=-- —— e mm e e o mm = e o mm = = -

] I
A
] [T]] [] W[e]

I [—

i_

The Edward S. Rogers Sr. Department

of Electrical & Computer Engineering

%’%\g UNIVERSITY OF TORONTO

Architecture

-—-—_-—_-—_-—_-F_________________

The Edward S. Rogers Sr. Department

| of Electrical & Computer Engineering

%@g;w“‘ UNIVERSITY OF TORONTO

Architecture

-—-—_-—_-—_-—_-F_________________

The Edward S. Rogers Sr. Department

of Electrical & Computer Engineering

”%“ UNIVERSITY OF TORONTO

Classification of patterns

* Creational patterns provide object creation mechanisms that

increase flexibility and reuse of existing code.

 Structural patterns explain how to assemble objects and classes into

larger structures, while keeping the structures flexible and efficient.

* Behavioral patterns take care of effective communication and the

assignment of responsibilities between objects.

?fi},? The Edward S. Rogers Sr. Department

@ | of Electrical & Computer Engineering

%;@ UNIVERSITY OF TORONTO

Criticism of Design Patterns

* Kludges for a weak programming language

Usually the need for patterns arises when people choose a programming
language or a technology that lacks the necessary level of abstraction.

* Inefficient solutions

Patterns try to systematize approaches that are already widely used.
* Unjustified use

If all you have is a hammer, everything looks like a nail.

?fi},? The Edward S. Rogers Sr. Department
e | of Electrical & Computer Engineering

+®) UNIVERSITY OF TORONTO

UML Relationships

Edward S. Rogers Sr. Department

lectrical & Computer Engineering

9% UNIVERSITY OF TORONTO

$OvYvvY

Association

Inheritance

Realization /
Implementation

Dependency
Aggregation

Composition

Copyrighted Material

Design Patterns

Elements of Reusable
Object-Oriented Software

<4
‘P

 Elements of Reusable
Object-Oriented
Software

* 23 OO0 patterns

Erich Gamma
Richard Helm
Ralph Johnson
John Vlissides

O
o
i
=
Z
=
-
m
wn
m
<
o
~
~
o/
m
w
W
~
N
z
>~
—
~
~
o
<
S
T
—
=
Z
~

SAI™M3S

Cover at © 1998 M C_ Fscher / Condon Ast - Baam - Holland. Al rights reserved.

Foreword by Grady Booch

Copyrighted Material

"i‘i{'s? The Edward S. Rogers Sr. Deparrment
& | lectrical & Computer Engineering

%}% UNIVERSITY OF TORONTO

Why Patterns?

* They offer solutions for specific problems

* They are easily applicable because the purpose and application are
consistently described

* They make work more efficient
* They can be adapted to specific contexts

* They make communication between developers easier
* Goal: Understandable, reusable, testable, maintainable and flexible

g8 The Edward S. Rogers Sr. D}

;;: ‘ ectrical & Cor 1, r Engin

w $ UNIVERSITY OF TORONTO

OO Design Principles

Single responsibility
principle

Open/closed principle

Liskov substitution principle

Interface segregation
principle

Dependency inversion
principle

Edward S. Rogers Sr. Department
lectrical & Computer Engineering

434 UNIVERSITY OF TORON"I"O

Single Responsibility Principle

Guildelines to partition your logic into classes

OO Design Principles

CARL QUIT. HES THE
ONLY ONE WHO KNOWS
HOW TO PROGRAM THE

LEGACY SYSTEM.

IT CANT BE THAT
HARD. GO FIGURE IT
OUT.

scottadams@aol.com

www.dilbert.com

’fﬁé The Edward S. Rogers Sr. Department
& | of Electrical & Computer Engineering

%Z?:a UNIVERSITY OF TORONTO

Single Responsibility Principle

A class should have one, and only one, reason to change.
Just because you can, doesn’t mean you should

Clean Code

A Handbook of Agile Software Craftsmanship

Benefits:
* Frequency and Effects of Changes

e Easier to Understand ‘

Q: What is the responsibility of your
class/component/microservice?

’fﬁé The Edward S. Rogers Sr. Department

@ | of Electrical & Computer Engineering

g:?:g UNIVERSITY OF TORONTO

Va

Single Responsibility Principle

Rectangle

ComputationalGeometryApp GraphicalApplication
+ draw() : void

+ area() . double

Rectangle has multiple responsibilities!
Geometrics of rectangles: area()
Drawing of rectangles: draw()

"i‘i{'é The Edward S. Rogers Sr. Deparrment
& | of Electrical & Computer Engineering

i‘g« UNIVERSITY OF TORONTO

Dependency in UML

 a directed relationship -- some UML element or a set of elements
requires, needs or depends on other model elements
for specification or implementation.

* Also called a supplier - client relationship. Modification of the
supplier may impact the client elements.

https://www.uml-diagrams.org/dependency.html

dward S. Rogers Sr. Depar
ctrical & Cor 1, r Engin

UNIVE RSITY OF TORONTO

https://www.uml-diagrams.org/uml-core.html

Single Responsibility Principle

ComputationalGeometryApp GraphicalApplication
GeometriRectangle Rectangle
+ area() . double + draw() : void

"i‘i{'é The Edward S. Rogers Sr. Department
‘ of Electrical & Computer Engi i

ngineering
%"’?mg UNIVERSITY OF TORONTO

SRP is a Hoax

19 December 2017 Moscow, Russia @ 66 comments

class awsocket {

2 boolean exists() { /* ... */)}
void read(final outputstream output) { /* ... */ }
void write(final inputstream input) { /* ... */ }

3

In order to change it and make it responsible for just one thing we

must introduce a getter, which will return an AWS client and then

create three new classes: ExistenceChecker, ContentReader,

and ContentWriter. They will check, read, and write.

https://www.yegor256.com/2017/12/19/srp-is-hoax.html

Single Responsibility Principle (SRP)

* It is all about cohesion -- the degree to which the elements inside
a module belong together. in one sense, it is a measure of the
strength of relationship between the methods and data of a class and
some unifying purpose or concept served by that class (wikipedia)

* if a client of a class tends to always use all the functions of
that class, then the class is probably highly cohesive

"iﬁré The Edward S. Rogers Sr. Department

@ | of Electrical & Computer Engineering

,;g« UNIVERSITY OF TORONTO

Corresponding Design Patterns

* Proxy

/x

Warehouse

p—]

Payment

\

—

“ .‘ N \Processing
@ Packaging e

Suppliers

Delivery

«interface»
Payment

+ pay(amount)

CreditCard

Taxes >

Cash

OO Design Principles

Single responsibility
principle

Open/closed principle

Liskov substitution principle

Interface segregation
principle

Dependency inversion
principle

The Open-Closed Principle

Extending Your Entities Correctly

Open-Closed Principle (OCP)

e Software entities should be open for extension, but closed for modification.
* better stability, maintainability

DID YOU KNOW THESE |T GUYS COPIED
MY IDEA OF EXTENSIBILITY [

4 The E{ ard S. Rogers Sr. D} ment
-‘ of Electrical & Co } r Engineering
w UNIVERSITY OF TORONTO

Fundamental Object-Oriented Design Principle

e ——

Encapsulation Abstraction

Polymorphism Inheritance

v

"i‘i{'s? The Edward S. Rogers Sr. Department

@ | of Electrical & Computer Engineering

%}% UNIVERSITY OF TORONTO

Open-Closed Principle (OCP)

* Implementation:
* inheritance
e composition

* Benefits:
* extend a component’s logic without breaking backward
compatibility
* test different component implementations (that have the
same logic) against each other.

’fi}j The Edward S. Rogers Sr. Department

@ | of Electrical & Computer Engineering

% UNIVERSITY OF TORONTO

https://stackify.com/oop-concept-inheritance/
https://stackify.com/oop-concepts-composition/

Open-Closed Principle (Example: Client&Server)

Client Server
«class» | _depends-on «class»
+saveSomeData(data:String) +post(url:String, data:String)

The class is:

- not open for extension, since we always use a concrete Server instance
- not closed for modification, because if we wish to change to another
type of server, we must change the source code.

al & Computer Engineering

ectrica
;‘;?:g UNIVERSITY OF TORONTO

Open-Closed Principle (Example: Client&Server)

Client AbstractServer
«class» - o> «abstract class»
+saveSomeData(data:String)|| * |[+post{url:String, data:String)

zFxtcnds

Server
«class»

+post(url:String, data:String)

"i‘i{'é The Edward S. Rogers Sr. Department

@ | of Electrical & Computer Engineering

i‘g« UNIVERSITY OF TORONTO

Abstract Class in Java

* An abstract method is a method that is declared without an implementation

* Consider using abstract classes if any of these statements apply to your situation:
* You want to share code among several closely related classes.

* You expect that classes that extend your abstract class have many common methods or
fields, or require access modifiers other than public (such as protected and private).

* You want to declare non-static or non-final fields. This enables you to define methods that
can access and modify the state of the object to which they belong.

* Consider using interfaces if any of these statements apply to your situation:

* You expect that unrelated classes would implement your interface. For example, the
interfaces Comparable and Cloneable are implemented by many unrelated classes.

* You want to specify the behavior of a particular data type, but not concerned about who
implements its behavior.

* You want to take advantage of multiple inheritance of type.

https://docs.oracle.com/javase/tutorial/java/landl/abstract.html

%’% The Edward S. Rogers Sr. Department
& | lectrical & Computer Engineering

%:Q UNIVERSITY OF TORONTO

https://docs.oracle.com/javase/8/docs/api/java/lang/Comparable.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Cloneable.html

Open-Closed Principle (Example: Order&Shipping)

Order < > Shipping Ground shipping

public double getShippingCost(Order order, String shipping) {
if ("ground".equals(shipping)) {
// calculate the total cost for Ground shipping
} else if ("air".equals(shipping)) {
// calculate the total cost for Air shipping

}

lectrical & Computer Engineering

ia gincering
OF TORONTO

@ ectr:
,%4 UNIVERSITY

Open-Closed Principle (Example: Order&Shipping)

Order <

’fﬁé The Edward S. Rogers Sr. Department
& | lectrical & Computer Engineering

,;;?:4 UNIVERSITY OF TORONTO

V

Shipping

Order

better

<<interface>>

0

A\

Extends

AirShipping

Shipping

;; ;x

P b

’ ~
~

’,

GroundShipping

AirShipping

Thoughts? Critigues on OCP

* Adding un-needed flexibility to code (to make it open for extension)
breeds complexity and carrying cost.

* It requires imagining all sorts of use-cases that don’t exist in order to
make it ultimately flexible.

* Principle !=you should always do this

’fi}i The Edward S. Rogers Sr. Department
e | of Electrical & Computer Engineering

% UNIVERSITY OF TORONTO

OO Design Principles

Single responsibility
principle

Open/closed principle

Liskov substitution principle]

Interface segregation
principle

Dependency inversion
principle

Duck Tesk

If it looks like a duck and quacks like a duck but it
needs batteries,
you probably have the wrong abstraction.

{?%? The Edward S. Rogers Sr. Deparrment
‘ of Electrical & Computer Engineering

%’a‘" UNIVERSITY OF TORON"}O

Qow can I send an SMS?

Wrong abstraction, brox
Q)

’fﬁé The Edward S. Rogers Sr. Department
& | of Electrical & Computer Engineering

,;;?:4 UNIVERSITY OF TORONTO

Liskov Substitution Principle (LSP)

* The object of a derived class should be able to replace an
object of the base class without bringing any errors in

the system or modifying the behavior of the

0dSe C

* Benefit: Code that adheres to LSP is loosely ©

dSS.

epenc

to each other and encourages code reusability.

ent

Inheritance

Animal

+age : Int
+gender: String

+isMammal ()
+mate()

IS-A relationship

Duck

Fish

+beakColor : String = “yellow”

+swim()
+quack()

-sizelnFt : Int
-canEat : Boolean

Zebra

+is_wild : Boolean

-swim()

+run()

he Edward S. Rogers Sr. Department
f Electrical & Computer Engineering

294 UNIVERSITY OF TORONTO

Square IS A Rectangle

The Edward S. Rogers Sr. Department

| of Electrical & Computer Engineering

%gﬁ‘ UNIVERSITY OF TORONTO

Violating the Liskov Substitution Principle

class Rectangle ({

public void setWidth (int width) {
this.width = width;

}

public void setHeight (int height) {
this.height = height;

}
public void area/()

%’% The Edward S. Rogers Sr. Department
& | Electrical & Computer Engineering

%:Q UNIVERSITY OF TORONTO

{return height *

width; }

Implementing Ssquare as a subclass of Rectangle:

class Square extends Rectangle {

public wvoid
super.
super.

}

public wvoid
super.
super.

setWidth (int width) {
setWidth (width) ;
setHeight (width) ;

setHeight (int height) {
setWidth (height) ;
setHeight (height) ;

Rectangle

+setWidth(int width)
+setHeight(int height)

+area():int

S

Square

+setWidth(int width)

+setHeight(int height)

Violating the Liskov Substitution Principle

/

void clientMethod (Rectangle rec)
rec.setWidth (5) ;
rec.setHeight (4) ;
assert (rec.area () == 20);

}

{

Rectangle

+setWidth(int width)
+setHeight(int height)
+area():int

A

Square

+setWidth(int width)
+setHeight(int height)

Liskov Substitution Principle (LSP)

* A LSP compliant solution |
«interface»
* Introduce the interface Shape Shape
+area():int

| I
| I
| |

Square Rectangle
+setSize(int size) +setWidth(int width)
+area(): int +setHeight(int height)

+area(): int

Solution

* To encapsulate what varies and to provide a generic
interface we introduce an abstract Shape class.

Takeaway is to formulate the abstractions based on
the logical structure of the code and not fall into the
trap of letting real world relationships force its way
into the design decisions of the application.

dward S. Rogers Sr. Depar
ctrical & Cor 1, r Engin

UNIVE RSITY OF TORONTO

Disadvantages to violating the LSP

* Code that does not adhere to the LSP is tightly coupled and creates
unnecessary entanglements.

* E.g. when a subclass can not substitue its parent class there would
have to be multiple conditional statements to determine the class or
type to handle certain cases differently.

9"%}3 The Edward S. Rogers Sr. Department

@ | of Electrical & Computer Engineering

% UNIVERSITY OF TORONTO

Liskov Substitution Principle (LSP)

* Think twice before applying the IS-A trick
* Use polymorphism with great caution
 When writing an API first take the point of view of the client of your API

* Test-Driven Development (TDD), where client code must be written for
test and design purposes before writing the code itself.

9"%}3 The Edward S. Rogers Sr. Department

‘ of Electrical & Computer Engineering

) UNIVERSITY OF TORONTO

s to all bank account? What

Do withdrawal applie
thdraw money from a lock

happen if we try 10 Wi
term deposit account?

Corresponding Design Patterns

* Strategy
* Composite
* Proxy

Jomputer Engineering
SITY OF TORONTO

OO Design Principles

Single responsibility
principle

Open/closed principle

Liskov substitution principle

Interface segregation
principle

Dependency inversion
principle

e Edward S. Rogers Sr. Department
Electrical & Computer Engineering

i‘g« UNIVERSITY OF TORONTO

Interface Segregation Principle

When more means less

Interface Segregation Principle (ISP)

* No client should be forced to depend on
methods it does not use.

* The goal of ISP is similar to Single
Responsibility principle : to reduce the
side effects and frequency of required
changes by splitting the software into
multiple, independent parts.

e "fat" interfaces! Interface Segregation Principle

When more means less

’fi}j The Edward S. Rogers Sr. Department

@ | of Electrical & Computer Engineering

% UNIVERSITY OF TORONTO

https://medium.com/@radheshyamsingh_83359/solid-principles-of-object-oriented-design-4f78d73526c6

Interface Segregation Principle

“Clients should not be forced to depend upon interfaces that
they don't use”

Iworker
SignIn()
StartWork()
TeaBreak() AN
0ilCheck() 72\
Lunch () P \
BattervCharge() [~

' 0\ A Human Robot

ContinueWéjfiL/// e
Signout () /?. o
i, 18 /4?

Iworker has methods
that are different for
different workers and

violates ISP

he Edwa

Electrical & Computer Engineering

i‘g« UNIVERSITY OF TORONTO

Interface Segregation Principle

“Clients should not be forced to depend upon interfaces that

they don't use”
Good

“Segregate your interfaces”

Iworker
SignIn() ITHuman IRobot
StartWork() TeaBreak() ReCharge ()
Continue () Lunch () OilCheck()
SignOut ()

e Edward S. Rogers S

i Electrical & Compute
C13

%"’?ﬁ‘l‘ UNIVERSITY OF TORONTO

Interface Segregation Principle (ISP)

A fat interface is not necessarily a design flaw

4 {} System
4 *0 |Convertible
@ GetTypeCodel()
@ ToBoolean(IFormatProvider)

@ ToChar{IFormatProvider) [SuppreSSMessagE("NDepend",

e "ND1200:AvoidInterfacesTooBig",

@ ToByte(IFormatProvider) . . Nt e . i)

@ Tolnt16{IFormatProvider) Justification="This interface is fat because it needs to
@ TolInt16(IFormatProvider) Support all primitive types"]

@ Tolnt32(IFormatProvider) ..]

© ToUInt32(IFormatProvider) public interface IConvertible {

@ Tolnt64(IFormatProvider)

@ TolInt64(IFormatProvider)

@ ToSingle(IFormatProvider)

@ ToDouble(IFormatProvider)

@ ToDecimal(IFormatProvider) https://www.ndepend.com/docs/suppress-issues?_ga=2.63469095.983202201.1601605450-
@ ToDateTime(lFormatProvider) 1723910178.1601605450

@ ToString(IFormatProvider)

@ ToType(Type.|IFormatProvider)

Edward S. Rogers Sr. Department

| of lectrical & Computer Engineering

%;@ UNIVERSITY OF TORONTO

ISP

Single responsibility
principle

Open/closed principle

n Liskov substitution principle

Interface segregation
principle

Classes that implement small | N Dependency inversion

i . . l
interfaces are more focused and priicipie
tend to have a single purpose

SRP

e Edward S. Rogers Sr. Department
Electrical & Computer Engineering

,.,,%@ UNIVERSITY OF TORON"}O

ISP

Single responsibility
principle

Open/closed principle

n Liskov substitution principle

Interface segregation
principle

By keeping interfaces small, 0 p]) Dependency inversion
the classes that implement them Loy Principe
have a higher chance to fully
substitute the interface

LSP

Edward S. Rogers Sr. Department
lectrical & Computer Engineering

4 UNIVERSITY OF TORONi"O

Corresponding Design Patterns

* Memento
* [terator

Jomputer Engineering
SITY OF TORONTO

OO Design Principles

Single responsibility
principle

Open/closed principle

Liskov substitution principle

Interface segregation
principle

%H;Eﬁ& o 0 @

Dependency inversion
principle

i Elec ering
a@,”é« UNIVERSITY OF TORONTO

O
O O

O O

\—

NS

Dependency Inversion Principle

When knowing how things work becomes a burden

Dependency Inversion Principle (DIP)

High-level modules, which provide complex logic,
should be easily reusable and unaffected by changes
in low-level modules, which provide utility features.

maintainability and reusability

Port doesn't define device

Dependency Inversion Principle (DIP)

* High-level modules should not depend on low-level modules.

Both should depend on abstractions.

e Abstractions should not depend on details (concrete

implementation). Details should depend on abstractions.

9"%}3 The Edward S. Rogers Sr. Department

of Electrical & Computer Engineering
%"‘&?ﬁ UNIVERSITY OF TORONTO

High Level Class

High Level Class +—3 Interface

Interface Interface

Low level class Low level class

Low level class

\ Low level class]

f|g When Dependen(y was not inverted flg Interface was defined I)y hlgh level class

https://www.codeproject.com/Articles/538536/A-curry-of-
Dependency-Inversion-Principle-DIP-Inve

Edward S. Rogers Sr. Department

| of Electrical & Computer Engineering

%mi UNIVERSITY OF TORONTO

Dependency Inversion Principle (DIP)

* A High level module is any module that contains the policy decisions
and business model of an application.

* Low level modules are modules that contains detailed
implementation that are required to execute the decisions and
business policies.

9"%}3 The Edward S. Rogers Sr. Department

@ | of Electrical & Computer Engineering

% UNIVERSITY OF TORONTO

Dependency Inversion Principle (DIP)

higher level module lower level module
Button Lamp
’ +TurnOn()
+Poll() +TurnOff()

Button objects control Lamp objects
and only Lamp objects.

shutterstr.ck:

%’% The Edward S. Rogers Sr. Department

@ | of Electrical & Computer Engineering

.;;?:gz UNIVERSITY OF TORONTO

Dependency Inversion Principle (DIP)

Button

Switchable
«interface»

Figure 6: Inverted Button Model

+activate()

Button

Abstract

K>

+deactivate“

| Lamp |

Button
Implementation

ButtonClient

Abstract

Lamp

....
" e
5
i
.4
B E

EE
ooooo

A B L B L B L B
.

- Write to Database

fig: Copy Program without maintaining DIP

Edward S. Rogers Sr. Department
ectrical & Computer Engineering

24 UNIVERSITY OF TORONTO

|Copy ‘< High level module

. A

LA B B B B B B B B AR B B B R
.

/ Read from Keyboard I I Write to Text File erte to Printer :
' Read from scanner - " Write to Database
Low level modules

fig: Copy program with DIP

e Edward S. Rogers Sr. Department
f Electrical & Computer Engineering
q.,,mga NIVERSITY OF TORONTO

Problem it we DO NOT maintain DIP

 System will rigid: It will be difficult to change a part of the system
without affection too many other parts of the system.

» System will fragile: When we will make a change, unexpected parts of
the system will break.

* System or component will be immobile: It will be difficult to reuse it
in another application because it cannot be disentangled from the
current application.

e And so on......

%’% The Edward S. Rogers Sr. Department

@ | of Electrical & Computer Engineering

;Z;@ UNIVERSITY OF TORONTO

Corresponding Design Patterns

* Factory Method
* Prototype
* |terator

’fﬁé The Edward S. Rogers Sr. Department
‘ of Electrical & Computer Engi i

ngineering
&ﬁ%g@ UNIVERSITY OF TORONTO

OO Design Principles

D Single responsibility Buildi ng stable
principle

and flexible
Open/closed principle systems

» Liskov substitution principle

Interface segregation
principle

Dependency inversion
principle

"i‘i{'é The Edward S. Rogers Sr. Deparrment
] | of Electrical & Computer Engineering

i‘g« UNIVERSITY OF TORONTO

Cargo cult programming

https://blog.ndepend.com/are-solid-principles-cargo-cult/

Are SOLID principles Cargo Cult?

It looks like a plane, but will it fly?

